Peierls stress of dislocations in molecular crystal cyclotrimethylene trinitramine.

نویسندگان

  • Nithin Mathew
  • Catalin R Picu
  • Peter W Chung
چکیده

Dislocation mediated plasticity in the α phase of the energetic molecular crystal cyclotrimethylene trinitramine (RDX) was investigated using a combination of atomistic simulations and the Peierls-Nabarro (PN) model. A detailed investigation of core structures and dislocation Peierls stress was conducted using athermal atomistic simulations at atmospheric pressure to determine the active slip systems. Generalized stacking fault energy surfaces calculated using atomistic simulations were used in the PN model to also estimate the critical shear stress for dislocation motion. The primary slip plane is found to be (010) in agreement with experimental observations, with the (010)[100] slip systems having the lowest Peierls stress. In addition, atomistic simulations predict the (021)[01[overline]2], (021)[100], (011)[100], (001)[100], and (001)[010] slip systems to have Peierls stress values small enough to allow plastic activity. However, there are less than five independent slip systems in this material in all situations. The ranking of slip systems based on the Peierls stress values is provided, and implications are discussed in relation to experimental data from nanoindentation and shock-induced plastic deformation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Contribution of molecular flexibility to the elastic–plastic properties of molecular crystal -RDX

We show in this work that the mechanical properties of molecular crystals are strongly affected by the flexibility of the constituent molecules. To this end, we explore several kinematically restrained models of the molecular crystal cyclotrimethylene trinitramine in the α phase. We evaluate the effect of gradually removing the flexibility of the molecule on various crystal-scale parameters suc...

متن کامل

Rotational defects in cyclotrimethylene trinitramine (RDX) crystals.

Cyclotrimethylene trinitramine (RDX) crystalizes in the orthorhombic α-phase at the ambient pressure and temperature. In principle, the point defects commonly found in monatomic crystals, such as vacancies and interstitials, may exist in RDX as well. However, in molecular crystals one encounters additional point defects associated with the distortion of the molecules. A set of rotational defect...

متن کامل

Crystal structure prediction for cyclotrimethylene trinitramine (RDX) from first principles.

Crystal structure prediction and molecular dynamics methods were applied to the cyclotrimethylene trinitramine (RDX) crystal to explore the stability rankings of various polymorphs using a recently developed nonempirical potential energy function that describes the RDX dimer interactions. The energies of 500 high-density structures resulting from molecular packing were minimized and the 14 lowe...

متن کامل

First-principles intermolecular binding energies in organic molecular crystals

The intermolecular binding (lattice) energies are calculated for the molecular crystals cyclotrimethylene trinitramine, pentaerythritol, and pentaerythritol tetranitrate using the CRYSTAL 98/03 and GAUSSIAN 98 programs, the DMOL program and the CASTEP program and compared with experiment. Calculating the theoretical intermolecular binding energy as a tool for testing the intrinsic quality of a ...

متن کامل

Predicting structure of molecular crystals from first principles.

A recently developed method, symmetry-adapted perturbation theory based on the density-functional description of monomers [SAPT(DFT)], is shown to be sufficiently accurate and numerically efficient to facilitate predictions of the structure of molecular crystals from first principles. In one application, a SAPT(DFT) potential was used to generate and order polymorphs of the cyclotrimethylene tr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. A

دوره 117 25  شماره 

صفحات  -

تاریخ انتشار 2013